Bài viết giới thiệu một số cách tính trung bình cộng phổ biến nhất và thường xuyên áp dụng trong các chương trình toán cấp 1, cấp 2. Đây là những phương pháp đơn giản, dễ hiểu phù hợp với mọi đối tượng học sinh, sinh viên. Ngoài ra, bài viết còn giúp bạn nắm rõ 1 số quy tắc tính trung bình cộng bằng máy tính, đẩy nhanh quá trình làm bài tập.

Cách tính trung bình cộng

Cách tính trung bình cộng đơn giản.

Trung bình cộng là gì?

Số trung bình cộng là một số trong dãy số thỏa mãn điều kiện: Là tỉ số tổng giá trị của tập hợp số đó và toàn bộ tập hợp của nhiều phần tử. Một cách phát biểu tổng quát lên, số trung bình cộng chính là thương giữa tổng các số hạng có trong dãy số đã cho với số các số hạng vừa lấy tổng.

Khái niệm đọc sẽ khó hiểu nhưng không sao, ngay đây sẽ là một số ví dụ minh họa giúp bạn dễ dàng hiểu.

Ý nghĩa số trung bình cộng trong toán học

Trung bình cộng là số trung gian giúp đánh giá các vấn đề thực tiễn trong cuộc sống. Một số trường thường sử dụng trung bình cộng như:

  • Tính toán mức lương trung bình cộng của 1 người / tháng → Đo lường được nhu cầu sống
  • Thu nhập bình quân đầu người của một quốc gia → Đánh giá được sức mạnh kinh tế của một quốc gia
  • Độ tuổi trung bình của một quốc gia → Xác định được đây là dân số trẻ, dân số già từ đó xác định được cấu trúc của nền kinh tế

Cần phân biệt rõ ràng hai khái niệm trung bình cộng và tổng. Tránh sai sót trong quá trình làm bài tập cũng như phân tích vấn đề nhất định.

Công thức tổng quát về trung bình cộng

Lưu ý trong công thức trên:

  • Với a1, a2, ... an phải là các hệ số, không được là biến số
  • Với n là số lượng các số. Chẳng hạn từ a1 → an thì gồm n số.

Các bước tính trung bình cộng của dãy số

  • Cộng tất cả các số trong dãy (Tính nhẫm nếu đơn giản và tính bằng máy tính nếu phức tạp)
  • Đếm xem trong dãy số có bao nhiêu số
  • Tiến hành lấy tổng vừa rồi chia cho số lượng các số của dãy đó ta được kết quả

Bài tập ứng dụng

Câu 1: Tìm trung bình cộng của các dãy số sau đây: 1, 5, 8, 10

Lời giải:

Tổng của các số là: 1 + 5 + 8 + 10  = 24

Số các số hạng là : 4

Vậy, trung bình cộng của các số đã cho là: 24 : 4 = 6

Để giải bài toán này ta thực hiện theo các bước sau:

  • Xác định các số hạng có trong bài toán và thực hiện đếm
  • Tính tổng các số hạng vừa tìm được
  • Áp dụng công thức số trung bình cộng = Tổng số hạng / Số lượng các số hạng có trong dãy

Câu 2: Biết rằng khối 5 của một trường học gồm có 4 lớp: 5A, 5B và 5C. Lớp 5A có tổng số 21 học sinh, lớp 5B có sỉ số 23 học sinh, lớp 5C có sỉ số 22 học sinh. Hỏi trung bình mỗi lớp có bao nhiêu học sinh?

Lời giải:

Số các số hạng ở đây là 3. (vì có 3 lớp 5A, 5B, 5C)

Tổng các số hạng bằng tổng học sinh của 3 lớp cộng lại sẽ là: 21 + 23 + 22 = 66

Vậy số học sinh trung bình mỗi lớp có: 66 : 3 = 22 (học sinh)

Câu 3: Trong một quá trình sửa đường nhựa trong thành phố. Đội 1 sửa xong 45m đường, đội 2 sửa hoàn thành 49m đường. Đội 3 sửa được số mét đường bằng trung bình cộng số mét đường của đội 1 và đội 2 đã sửa. Hỏi cả ba đội 1 2 3 đã sửa được bao nhiêu mét đường?

Lời giải: 

Số mét đường mà đội 3 hoàn thành trong chiến dịch sửa đường lần này là: (45 + 49) : 2 = 47 (m).  (phần này có áp dụng tính chất trung bình cộng để tính số mét  đường của đội 3)

Cả ba đội sửa được số mét đường là: 45 + 47 + 49 = 141 (m).

Vậy cả ba đội đã sửa được tổng cộng 141 mét.

Câu 4: Trong một quá trình chiết xuất dầu ra ngoài, ta thực hiện theo các quy trình như sau: Lần thứ nhất lấy ra 15 lít dầu; lần thứ 2 lấy nhiều hơn lần 1 là 9 lít dầu;  lần thứ 3 lấy ít hơn tổng 2 lần trước 6 lít dầu. Hỏi trung bình mỗi lần chiết xuất dầu đã lấy ra bao nhiêu lít dầu? (Sử dụng công thức tính trung bình cộng để tính toán.

Lời giải chính xác:

Số dầu lấy ra lần thứ 2 là: 15 + 9 = 24 (lít) (Lấy nhiều hơn lần thứ nhất 9 lít dầu)

Tổng số lít dầu lần 1 và lần 2 lấy ra là: 15 + 24 = 39(lít)

Số lít dầu lấy ra lần thứ 3 là: 39 - 6 = 33 (lít) (Lần thứ 3 lấy ít hơn tổng 2 lần trước 6 lít dầu)

Trung bình mỗi lần lấy ra được: (15 + 24 + 33) : 3 = 24 (lít)

Vậy trung bình mỗi lần lấy ra 24 lít dầu.

✅ Đọc thêm: Cách tính lim.

Bài viết trên vừa trình bày cho các bạn một số cách tính trung bình cộng của chương trình toán học. Đây là một trong những kiến thức nền tảng nhưng cũng rất quan trọng khi bắt đầu học môn toán nhập môn, lĩnh vực kiến thức có rất nhiều ứng dụng trong thực tế.

Hi vọng kiến thức trên bổ ích với các bạn. Chúc tất cả các em học sinh học tốt môn toán.